ONCOLYTIC VIRUS FOR THE TARGETED (IMMUNO)THERAPY OF PANCREATIC CANCER

Pierre Cordelier, PhD
Team « therapeutic innovation in pancreatic cancer »
Cancer Research Center of Toulouse
GENE THERAPY FOR PDAC

Patient samples

Loss of antitumoral genes expression

Non viral delivery

THERGAP-1
22 patients
Feasibility
Safety
Biomarkers

THERGAP-2
70 patients
Efficacy
Biomarkers

Closed Dec 2020

Clin Trial: NCT02806687

But...

Limited gene delivery efficacy
Only few pathways targeted
Antitumoral immune response
ONCOLOYTIC VIRUS: MODE OF ACTION

Oncolytic virus

Normal cell
- Abortive replication
- Viral clearance

Tumor cell
- Viral replication
- Oncolytic activity

Recruitment of immune cells
- +/- ICB

Inflammation, chemokines production

Viral replication, spread and oncolysis

Tumor eradication
CAN WE SUCCESSFULLY TREAT PDAC PATIENTS WITH ONCOLYTIC VIRUSES?

Open questions:

a. Cellular determinants
b. Mode of action

PDAC primary cells Oncolytic virus

CAN WE SUCCESSFULLY TREAT PDAC PATIENTS WITH ONCOLOYTIC VIRUSES?

Open questions:

a. Immune cells involved
b. ICB combos
CURRENT AND FUTURE DIRECTIONS

PDAC cell and oncolytic virus crosstalk

- a. Oncolytic signature for patients' stratification
- b. Increase permissiveness, expose novel vulnerabilities
- c. With AI support, define best therapeutic scenario

PDAC tumors and oncolytic virus crosstalk

- a. TME repolarization characterization
- b. Extra gene delivery (ICB, TME disrupting agents...)
- c. Metastasis targeting
THERAPEUTIC INNOVATION IN PANCREATIC CANCER “IMPACT”

P. Cordelier, DR INSERM

L. Buscail, MD, PhD PU-PH
N. Carrère, MD, PhD PU-PH
M. Kazemimanesh, PhD, postdoc fellow
N. Kontopoulos, PhD trainee
G. Labrousse, PhD, research engineer
C. Lopez, research engineer
A. Névot, research engineer
L. Quillien, PharmD, PhD trainee
A. Redouté, PhD trainee
M. Vienne, PhD, postdoc fellow

N. Béry, PhD, senior postdoc
B. Bournet, MD, PhD PU-PH
M. Brunet, PhD trainee
A. Cornebois, PhD trainee
N. Hanoun, INSERM research engineer
A. Lumeau, PhD trainee
C. Maulat, Surgeon trainee, PhD trainee
F. Muscari, MD, PhD PU-PH
M. Sorbara, research engineer
J. Teillet, PhD, research engineer
J. Torrisani, CRCN INSERM
C. Vargas, PhD trainee

Dr S. Cussat-Blanc
Dr N. Dusetti

Pr. S. Bertagnoli
Dr F. Gallardo
Dr E. Marcheteau

Roche
Genentech
Fondation de France
Inserm
Toulouse Tech Transfer
PANCREATIC CANCER INTRINSIC PI3Kα ACTIVITY ACCELERATES METASTASIS AND REWIRES MACROPHAGE COMPONENT

Thibault B., Ramos-Delgado F., Pons-Tostivint E., et al

QUESTIONS ASKED

• Oncogenic drivers of metastatic dissemination

• Importance of tumour-intrinsic oncogenic signals to shape a tumour-promoting microenvironment
PI3Kα activation gene signature is increased in metastatic pancreatic cancer patients

A Hallmarks

<table>
<thead>
<tr>
<th>Pathways</th>
<th>Corr p value PDACmet vs normal</th>
<th>Corr p value PDACloc vs normal</th>
<th>Corr p value CP vs normal</th>
<th>Corr p value PDACmet vs PDACloc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complement</td>
<td>0.0002</td>
<td>0.0000</td>
<td>0.0066</td>
<td>0.2773</td>
</tr>
<tr>
<td>Apical junction</td>
<td>0.0016</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.1524</td>
</tr>
<tr>
<td>Coagulation</td>
<td>0.0020</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.1487</td>
</tr>
<tr>
<td>Glycolysis</td>
<td>0.0021</td>
<td>0.0403</td>
<td>0.0482</td>
<td>0.8633</td>
</tr>
<tr>
<td>IL-2 STAT5 signaling</td>
<td>0.0022</td>
<td>0.0001</td>
<td>0.0014</td>
<td>0.0524</td>
</tr>
<tr>
<td>Reactive oxygen species pathway</td>
<td>0.0038</td>
<td>0.0075</td>
<td>0.0087</td>
<td>0.9235</td>
</tr>
<tr>
<td>Interferon alpha response</td>
<td>0.0042</td>
<td>0.0002</td>
<td>0.0008</td>
<td>0.3250</td>
</tr>
<tr>
<td>Heme metabolism</td>
<td>0.0043</td>
<td>0.0002</td>
<td>0.0006</td>
<td>0.1213</td>
</tr>
<tr>
<td>Interferon gamma response</td>
<td>0.0046</td>
<td>0.0001</td>
<td>0.0034</td>
<td>0.1668</td>
</tr>
<tr>
<td>IL-6 JAK STAT3 signaling</td>
<td>0.0049</td>
<td>0.0010</td>
<td>0.0230</td>
<td>0.1679</td>
</tr>
<tr>
<td>PI3K Akt mTOR Signaling</td>
<td>0.0077</td>
<td>0.0032</td>
<td>0.5960</td>
<td>0.3675</td>
</tr>
<tr>
<td>Hedgehog signaling</td>
<td>0.0081</td>
<td>0.9643</td>
<td>0.0002</td>
<td>0.0657</td>
</tr>
<tr>
<td>Early estrogen response</td>
<td>0.0098</td>
<td>0.0003</td>
<td>0.0000</td>
<td>0.0355</td>
</tr>
<tr>
<td>Myogenesis</td>
<td>0.0103</td>
<td>0.1399</td>
<td>0.0311</td>
<td>0.0048</td>
</tr>
<tr>
<td>TNFα signaling via NFKB</td>
<td>0.0121</td>
<td>0.0003</td>
<td>0.0038</td>
<td>0.0167</td>
</tr>
<tr>
<td>Inflammatory response</td>
<td>0.0155</td>
<td>0.0140</td>
<td>0.0082</td>
<td>0.0568</td>
</tr>
<tr>
<td>Oxidative phosphorylation</td>
<td>0.0205</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0234</td>
</tr>
<tr>
<td>Mitotic spindle</td>
<td>0.0218</td>
<td>0.0230</td>
<td>0.0061</td>
<td>0.6924</td>
</tr>
<tr>
<td>Epithelial mesenchymal transition</td>
<td>0.0219</td>
<td>0.0000</td>
<td>0.0004</td>
<td>0.0031</td>
</tr>
<tr>
<td>Xenobiotic metabolism</td>
<td>0.0226</td>
<td>0.0829</td>
<td>0.2047</td>
<td>0.0163</td>
</tr>
<tr>
<td>Allograft rejection</td>
<td>0.0230</td>
<td>0.0335</td>
<td>0.0141</td>
<td>0.7627</td>
</tr>
<tr>
<td>Wnt beta catenin signaling</td>
<td>0.0301</td>
<td>0.0000</td>
<td>0.0157</td>
<td>0.3125</td>
</tr>
<tr>
<td>UV response up</td>
<td>0.0445</td>
<td>0.6722</td>
<td>0.0604</td>
<td>0.1190</td>
</tr>
</tbody>
</table>

B PI3K-related Reactome

<table>
<thead>
<tr>
<th>Pathways</th>
<th>Corr p value PDACmet vs PDACloc</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI3K Akt activation</td>
<td>0.0603</td>
</tr>
<tr>
<td>PI3K Akt signaling in cancer</td>
<td>0.0741</td>
</tr>
<tr>
<td>PI3K cascade FGFR2</td>
<td>0.0162</td>
</tr>
</tbody>
</table>
PI3Kα inhibition prevents development of macrometastasis

Pharmacological

BYL719=Alpelisib

Genetic

In situ KPC Mice

Tail vein injection

Tail vein injection
PI3Kα inhibition prevents development of macrometastasis

Pharmacological
BYL719=Alpelisib

Genetic

In situ KPC Mice

Tail vein injection

Tail vein injection
Pharmacological PI3Kα inhibition prevents the acquisition of tumour-associated inflammatory (CD206+) macrophages
Macrophage TNFα secretion is promoted by PI3Kα activity-induced IL-3 in tumour cells.
IN SUMMARY
ANTIBODY THERAPY IN PANCREATIC CANCER: HUGE EFFORTS, MUCH DISAPPOINTMENT AND FUTURE CHALLENGE

Christel Larbouret

Institut de Recherche en Cancérologie
“Drug resistance and new cancer treatment”
Robust target selection

- Well understood role in tumor biology (initiation and progression of PC)
- Near exclusive expression in the tumor vs normal tissues
- Avoid secretion into circulation

Targets of antibodies that have undergone pre-clinical evaluation in pancreatic cancer

![Diagram of potential therapeutic targets in pancreatic cancer](image)
Targets of antibodies that have undergone clinical evaluation (phase I/II) in pancreatic cancer

Arias-Pinilla GA, Cancers 2021; Boland AJ, BBA 2021
Implicated in metastasis and resistance to therapies (chemo or targeted)

Antibody combination (simultaneous targeting of signaling pathways- heterodimers) – inhibition of escape response
Anti-EGFR + anti-HER2 antibody combination

Pancreatic tumor xenograft (K-ras M)

Effect independently of Kras and in first and second line of treatment Pan-HER in GR PDx pancreatic models (Rabia E, Mabs 2021)
33 patients evaluable for efficacy: **27% of stabilization**
- Correlation between the **OS and the cutaneaous toxicity**
- **Doses of cetuximab and trastuzumab**
- Second or more lines of treatment
- No biomarker
Targeting the NRG1/HER3 pathway in tumor cells and CAF
With an anti-neuregulin 1 antibody

Orthotopic Pancreatic tumor xenograft (mix CAF/TC))

Ogier C, Larbouret C. Cancer letters, 2019
Challenge and future perspectives with antibody therapeutics in PC

- Promising pre clinical studies but disappointing clinical benefit. Why?
 - heterogeneous nature of PC
 - identify biomarkers of therapeutic response
 - innovation is required to develop models reflected molecular aspects of PC

- Physical barrier and effective dose of antibody

Hoogstins CES et al. *Ann Surg Oncol* 25:3350-3357, 2018 and Vahrmeijjer AL, personnal communication
Challenge and future perspectives with antibody therapeutics in PC

• Promising pre clinical studies but disappointing clinical benefit. Why?
 - heterogeneous nature of PC
 - identify biomarkers of therapeutic response
 - innovation is required to develop models reflected molecular aspects of PC

• Physical barrier and effective dose of antibody

• Effective dose and injection sequence of each antibodies need to be optimized

• Improved Ab efficacy: antibody drug conjugated (Bourillon L, Int journal of Cancer 2019)

• Simultaneous targeting of signaling pathways, tumor stroma and immune check point inhibitors (Labex Mabimprove- PhD)